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Abstract
With the help of the bond operator representation for three S = 1

2 spins,
we study the effective Hamiltonian and the phase diagram of a generalized
spin- 1

2 distorted diamond chain. In the weak-intertriangle-coupling limit,
the magnetism of the effective Hamiltonian is studied with second-order
perturbation theory and mean-field decoupling. Various phases such as the
spin-fluid phase, the dimerized phase and the ferrimagnetic phase are shown to
compete. For larger intertriangle interactions, the spin-fluid phase and the
dimerized phase can be also described by the effective spin–orbital model
and the region of the dimerized phase enlarges around the symmetric point
of J1 = J2 = J3 (J1, J2 and J3 are the intratriangle interactions). The
magnetization plateaus at 1

3 Ms and 2
3 Ms in the magnetic field are also studied.

1. Introduction

In recent years, frustrated magnetic systems have been attracting a lot of attention.
Antiferromagnetic spin systems on geometrically frustrated lattices show many unusual
behaviours of magnetic and thermal properties. For example, Heisenberg antiferromagnets
on the triangular lattice [1, 2] are believed to have three-sublattice long-range Néel order,
while Heisenberg antiferromagnets on the two-dimensional Kagóme lattice [3, 4] or on the
three-dimensional pyrochlore lattice [5–7] have disordered ground states with high degeneracy.
SrCu2(BO3)2 [8, 9], which can be described by the Shastry–Sutherland model [10], has
a spin-liquid ground state with a finite spin gap. The m = 1

8 , 1
4 and 1

3 magnetization
plateaus observed in external magnetic fields [8, 11] have been studied extensively [12–
16]. The planar model of weakly coupled spin- 1

2 trimers describing the triangular spin-
cluster compound La4Cu3MoO12 [17] shows various long-range-ordered states to compete,
depending on the ratio of the intratriangle coupling constants [18, 19]. Very recently, a
quasi-one-dimensional material, Cu3Cl6(H2O)2·2H8C4SO2, consisting of S = 1

2 trimer spin
chains, has been studied experimentally [20] and theoretically [21–23]. From the measured
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Figure 1. The DDC model with general intertriangle interactions. When J1 = J ′
1 and J3 = J ′

3,
the model describes Cu3Cl6(H2O)2·2H8C4SO2.

susceptibility and magnetization curves [20], it is found that Cu3Cl6(H2O)2·2H8C4SO2 has a
spin-singlet ground state with an excitation gap. Ishii et al then suggested a distorted diamond
chain (DDC) model whose translational symmetry is spontaneously broken. In this paper, we
study a generalized diamond chain model:

H = H0 + H1, (1)

with

H0 =
∑

i

(J1 �Si1 · �Si2 + J2 �Si2 · �Si3 + J3 �Si3 · �Si1),

H1 =
∑

i

(J ′
1
�Si3 · �Si+1,1 + J ′

3
�Si2 · �Si+1,1),

(2)

where, as shown in figure 1, J1, J2 and J3 denote intratriangle interactions and J ′
1 and J ′

3

the intertriangle interactions. �Si, j ( j = 1, 2, 3) represents a spin- 1
2 degree of freedom at

site j of the triangle centred at position i . When J1 = J ′
1 and J3 = J ′

3, the Hamiltonian
is used to describe Cu3Cl6(H2O)2·2H8C4SO2 and was called the DDC model. Furthermore,
when J1 = J3, the system returns to the diamond chain model studied by Takano et al [24].
They showed that there exist three phases in the parameter space: the ferrimagnetic phase for
J2/J1 < 0.909, the tetramer–dimer (TD) singlet phase for 0.909 < J2/J1 < 2 and the dimer–
monomer (DM) phase for J2/J1 > 2. When J1 �= J3 (the DDC model), the symmetry of the
tetramer cluster in the TD phase is broken and the dimerization is weighted on the J1-bond (if
J1 > J3). A complete phase diagram for the DDC model was given by Okamoto, Tonegawa
et al [21, 22] and also by Sano and Takano [23]. In addition to the ferrimagnetic phase and
the gapless spin-fluid phase, a gapped dimerized phase exists around the symmetric point of
J1 = J2 = J3. In section 2, with the help of the bond operator representation for three S = 1

2
spins [19, 25], we map the model Hamiltonian (1) to an effective spin–orbit model and then
study its phase diagram by second-order perturbation theory. In section 3, it is shown that the
model is dimerized around the symmetric point of J1 = J2 = J3 and the dimerized region
increases with increasing J ′

1 and J ′
3. The 1

3 Ms and 2
3 Ms magnetization plateaus predicted in

the DDC model and in Cu3Cl6(H2O)2·2H8C4SO2 are studied in section 4.

2. The effective Hamiltonian and the phase diagram in the weak-coupling limit

A symmetric spin triangle with J1 = J2 = J3 has a fourfold-degenerate ground state
composed of two doublets corresponding to right and left chirality; the excited states are
spin- 3

2 quadruplets. Introducing eight bosons to denote the eight eigenstates, we obtain the
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bond operator representation of the three spins Sp (p = 1, 2, 3) [25]:

S+
p = − 1

3 (u†
l dl + u†

r dr ) + 1
3 q+

1 q−1 +
1√
3
(q+

3 q1 + q+
−1q−3)

+ 1
3 j 2p(2u†

l dr − u†
r q−1 − q†

1 dl +
√

3d†
r q−3 +

√
3q†

3 ul)

+ 1
3 j p(2u†

r dl − u†
l q−1 − q†

1 dr +
√

3d†
l q−3 +

√
3q†

3 ur ),

Sz
p = 1

6 (u†
l ul + u†

r ur + q†
1 q1 − d†

l dl − d†
r dr − q†

−1q−1) + 1
2 (q†

3 q3 − q†
−3q−3)

+ 1
3 j 2p(d†

l dr + d†
r q−1 + q†

−1dl − u+
l ur − u†

r q1 − q†
1 ul)

+ 1
3 j p(d†

r dl + q†
−1dr + d†

l q−1 − u+
r ul − q†

1 ur − u†
l q1),

(3)

where j = ei 2
3 π , u†

l(r)|0〉, d†
l(r)|0〉 correspond to the doublets with left (right) chirality and q†

α|0〉
with α = 3, 1,−1,−3 to the quadruplets with Sz = 3

2 , 1
2 , − 1

2 and − 3
2 respectively. The

restriction that the physical states are either the doublets or quadruplets leads to the constraint
u†

l ul + u†
r ur + d†

l dl + d†
r dr + q†

αqα = 1.
With the quadruplets projected out, the three S = 1

2 spins Sp with p = 1, 2, 3 can be
represented by the pseudospin operator and the chirality operator as [25–28]

S+
p = 1

3S
+ − 2

3 j 2pS+τ + − 2
3 j pS+τ−,

Sz
p = 1

3S
z − 2

3 j 2pSzτ + − 2
3 j pSzτ−,

(4)

where S = S1 + S2 + S3 is the total spin of a spin triangle: S+ = −(u†
l dl + u†

r dr )

and Sz = 1
2 (u†

l ul + u†
r ur − d†

l dl − d†
r dr ). The chirality operator can be expressed as:

τ + = (u†
l ur + d†

l dr ) and τ z = 1
2 (u†

l ul − u†
r ur + d†

l dl − d†
r dr ). It can be shown that S and τ are

independent degrees of freedom.
Using the total spin operator S and the chirality operator τ , we obtain the effective

Hamiltonian of model (1) at J1 = J2 = J3:

Hef f = − 3
4 N J1 +

∑
i

J ′
1

9
Aτ

i,i+1Si · Si+1, (5)

where N is the number of the spin triangles and Aτ
i,i+1 the effective magnetic coupling coefficient

containing operator τ : Aτ
i,i+1 = [1 + λ − 2(1 + λj)τ +

i − 2(1 + λj 2)τ−
i ](1 − 2 j 2τ +

i+1 − 2 jτ−
i+1)

with λ = J ′
3/J ′

1.
For a nonsymmetric spin triangle with general J1, J2 and J3, the chirality symmetry no

longer exists and the degeneracy of the two doublets will lift; we can define a transfer operator
T to denote the change of the spin states from one doublet to another [19]: T + = a+

2 a1 + b+
2 b1,

T z = 1
2 (a+

2 a2 +b+
2b2 −a+

1 a1 −b+
1 b1), where a†

1(2)|0〉, b†
1(2)|0〉 denotes the lower (higher) doublet.

The relations between the operators τ and T are

τ + = eiδ(T z − iT y),

τ− = e−iδ(T z + iT y),
(6)

where �eiδ = J1 + j J2 + j 2 J3.
With the spin operator S and transfer operator T , we can map the original spin

Hamiltonian (1) to an effective spin–orbital model:

H (1)

ef f = Ha + Hb, (7)

with
Ha = − 1

4 (J1 + J2 + J3)N +
∑

i

�T z
i ,

Hb =
∑

i

J ′
1

9
BT

i jSiSi+1,
(8)
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where

BT
i j = {1 + λ − 4[cos δ + λ cos(δ + 2

3π)]T z
i − 4[sin δ + λ sin(δ + 2

3π)]T y
i }

× [1 − 4 cos(δ + 4
3π)T z

i+1 − 4 sin(δ + 4
3π)T y

i+1]. (9)

In the following, we calculate the effective magnetic coupling coefficients in the weak-
coupling limit of J ′

1, J ′
3 � J1, J3,�. Since [ �S, �T ] = 0, we can regard the spin operators

as c-numbers when we perform the perturbation with respect to the transfer operators. The
ground state of Ha is |g.s.〉 = ∏

i |T z
i = − 1

2 〉. Up to first order, we have T z ∼ − 1
2 . Recalling

that eiδ = (J1 + j J2 + j 2 J3)/�, we obtain the effective coefficient as

B = [1 + λ + (2 − λ) cos δ − √
3λ sin δ](1 − cos δ +

√
3 sin δ)

= 1

�2
[(1 + λ)� + 2J1 − (J2 + J3) − λ(J1 + J2 − 2J3)](� + 2J2 − J1 − J3).

(10)

Along some special lines, the effective magnetic coupling coefficients to first order are
zero and we have to calculate the higher-order perturbation. Considering lower-order excited
states:

|1i〉 = |T z
i = 1

2 〉
∏
j �=i

|T z
j = − 1

2 〉,

|2i j〉 = |T z
i = 1

2 〉|T z
j = 1

2 〉
∏
l �=i j

|T z
l = − 1

2 〉, (11)

we get the effective magnetic coupling up to the second order as

H (2)

ef f = H (2a)

ef f + H (2b)

ef f (12)

with

H (2a)
ef f = 2J ′

1
2

81�
(a2b2 + c2d2)

∑
i

SiSi+1 − 2J ′
1

2

81�
abcd

∑
i

SiSi+2,

H (2b)
ef f = 8J ′

1
2

81�
a2d2

∑
i

SiSi+1

(13)

where H (2a)
ef f and H (2b)

ef f come from |1i〉 and |2i j〉 respectively and

a = sin δ + λ sin(δ + 2
3 π),

b = 1 + 2 cos(δ + 4
3π),

c = 1 + λ + 2[cos δ + λ cos(δ + 2
3π)],

d = sin(δ + 4
3π).

(14)

Now we discuss the phase diagram of the original spin Hamiltonian by checking the sign
of the effective magnetic coupling. In figure 2, we show the effective magnetic coupling
coefficients up to first order as functions of J1 (J2 = 1) for J3 = 0.4 (solid curve), 0.8
(dashed curve), 1.2 (dotted curve) and 2.0 (dotted–dashed curve) given λ = 1 (figure 2 (a))
and λ = J3/J1 (figure 2 (b)). It is pointed out that the change of λ will not change the
sign of the effective magnetic coupling coefficients. As shown in figure 3, on the lines of
J1 = J2 < J3 (line a), J2 = J3 < J1 (line b) and J1 = J3 < J2 (line c), the magnetic coupling
coefficients up to first order are zero and the J1–J3 plane was separated into three regions. In
the regions I and II, B > 0, the system is in the antiferromagnetic spin-fluid phase; while in
the region III, B < 0, the system is in the ferrimagnetic phase. On lines a and b, the second-
order perturbation gives H (2)

ef f = J ′2
18�

(3λ2 + 1)
∑

i SiSi+1 and H (2)

ef f = J ′2
18�

(3 + λ2)
∑

i SiSi+1

respectively, indicating that the system is still in the antiferromagnetic spin-fluid phase.
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Figure 2. Effective magnetic coupling coefficients B as a function of J1 with J3 = 0.4 (solid
curve), J3 = 0.8 (dashed curve), J3 = 1.2 (dotted curve) and J3 = 2.0 (dashed–dotted curve) for
(a) λ = 1 and (b) λ = J3/J1. J2 is set to 1.

Along the line of J1 = J3 < J2, we obtain

H (2)

ef f = J ′2

6�
(1 − λ)2

∑
i

SiSi+1. (15)

When λ �= 1, H (2)

ef f > 0, the system is still in the spin-fluid phase. For λ = 1, we get H (2)

ef f = 0.
Even up to higher-order perturbation, the effective magnetic coupling coefficient is still zero,
which means that the system is in the DM state and every spin triangle is independent [24]
with a free spin S1 and a singlet formed by S2 and S3. The DM state is 2N -fold degenerate.
Tonegawa et al regarded it as a special case of a spin-fluid state with Stot = 0 [22].
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Figure 3. The phase diagram of the generalized DDC in the small-J ′
1 and small-J ′

3 limits.

3. Dimerized state in the generalized distorted diamond chain

At J1 = J2 = J3, � = 0, the perturbative theory in section 2 is not applicable. We can solve
the effective spin–orbit model (5) by a mean-field decoupling that retains the quantum nature
of the spin and chirality variables [3]. At the mean-field level, Hamiltonian (5) can be rewritten
as

Hef f = − 3
4 N J1 +

∑
〈i j〉

1
9 J ′

1(a
τ
i jSiS j + as

i j Aτ
i j − aτ

i ja
s
i j), (16)

where as
i j = 〈SiS j〉 and aτ

i j = 〈Aτ
i j〉 should be determined self-consistently. For a two-triangle

system (denoted by i and j ), we use the basis |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉 in the orbital space. The
two-site orbital Hamiltonian Aτ

i j has eigenvalues 1+λ−4
√

1 − λ + λ2±2(λ+1−√
λ2 − λ + 1)

and 1 + λ + 4
√

1 − λ + λ2 ± 2(λ + 1 +
√

λ2 − λ + 1). The corresponding eigenfunctions can
be analytically obtained. We omit them here for simplicity. Considering the spin singlet,
we get the lowest energy of Eg = − 3

2 J1 − 1
4 J ′

1(1 + λ + 2
√

1 − λ + λ2). The dimer has a
wavefunction of φτ

i j ⊗ φσ
i j with |φσ

i j〉 a spin singlet and φτ
i j the eigenstate corresponding to

the eigenenergy of 3(1 + λ + 2
√

λ2 − λ + 1). Following Mila [3], an N-triangle system is
shown to have a wavefunction of |	0(D)〉 = ∏

i j∈D φτ
i j ⊗ φσ

i j since 〈φτ
i jφ

τ
kl |Aτ

jk|φτ
i jφ

τ
kl〉 = 0

and 〈φσ
i jφ

σ
kl |S jSk |φσ

i jφ
σ
kl〉 = 0, which can be checked directly. The corresponding ground

state energy is Eg(N) = − 3
4 N J1 − 1

8 N J ′
1(1 + λ + 2

√
1 − λ + λ2). For λ = 1, Eg(N) =

− 3
4 N J1 − 1

2 N J ′
1 and φτ

i j = 1
2 (− j, j 2,− j 2, 1).

The dimer wavefunction can be expressed in terms of the bond operators. At λ = 1,

φτ
i j ⊗ φσ

i j =
(

− j

2
√

2
u†

li d
†
l j +

j 2

2
√

2
u†

li d
†
r j − j 2

2
√

2
u†

ri d
†
l j +

1

2
√

2
u†

ri d
†
r j − d ←→ u

)
|0〉 (17)

where |0〉 is the vacuum state and d ←→ u denotes similar expressions with d and u exchanged.
Inserting the spin wavefunctions represented by u(d)

†
l(r)|0〉 [19], we get the spin configuration
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of the dimer as

φτ
i j ⊗ φσ

i j = j − 1

6
√

2
((|↑1↓3〉 − |↓1↑3〉)i (|↑i2↓ j1〉 − |↓i2↑ j1〉)(|↑2↓3〉 − |↓2↑3〉) j

+ (|↑1↓2〉 − |↓1↑2〉)i(|↑i3↓ j1〉 − |↓i3↑ j1〉)(|↑2↓3〉 − |↓2↑3〉) j ), (18)

which is just the dimerized state found by Tonegawa et al (figures 1(c) and (d) in [22]). Thus
we show that at the symmetric point of J1 = J2 = J3, the DDC has a dimerized ground state
and the ground state is just the one found by Tonegawa et al.

Very recently, Raghu et al [31] studied a spin-triangle chain with J1 the intratriangle
interaction and J2 the intertriangle interaction. They derived the effective Hamiltonian to
second order in the ratio of J2/J1 by means of degenerate perturbation theory and then
compared the results obtained by exact diagonalizaiton of the effective Hamiltonian with
those obtained for the full Hamiltonian using exact diagonalization and the density-matrix
renormalization group method. For the model that they studied, the effective Hamiltonian
gives an accurate ground state energy only when the ratio is <0.2. The case is different
for the present model. The only approximation in our mapping to the effective spin–orbit
Hamiltonian is to project out the S = 3

2 spin states. If a spin singlet forms in every spin
triangle in the ground state, the total spin of every spin triangle will be 1

2 , and then the effective
spin–orbital Hamiltonian will describe well the low-temperature properties of the original spin
Hamiltonian if the intertriangle interactions do not activate the S = 3

2 spin states. Therefore,
our effective Hamiltonian will be applicable to the DM and the TD states in the diamond model
for J1 = J3 = J ′

1 = J ′
3 [24], as well as the spin-fluid and the dimerized states in the DDC for

J ′
1 = J1 and J ′

3 = J3 [22].
For those points not close to the symmetric point of J1 = J2 = J3, � will be large and

the perturbation theory in section 2 will be applicable. Therefore, when J ′
1 and J ′

3 increase,
the outline of the phase diagram will not change, but the region of the dimerized state may
enlarge. With the mean-field decoupling, the effective Hamiltonian (7) and (8) can be written
as

H (1)
M F = − 1

4 (J1 + J2 + J3)N +
∑

i

�T z
i +

∑
〈i j〉

1
9 J ′

1(a
T
i jSiS j + as

i j BT
i j − aT

i j a
s
i j), (19)

where as
i j and aT

i j = 〈BT
i j 〉 should be determined self-consistently. In the basis |↑↑〉, |↑↓〉,

|↓↑〉 and |↓↓〉, the two-site orbital Hamiltonian BT
i j has eigenvalues 1 + λ − 4

√
1 − λ + λ2 ±

2(λ + 1 − √
λ2 − λ + 1) and 1 + λ + 4

√
1 − λ + λ2 ± 2(λ + 1 +

√
λ2 − λ + 1). Taking

into account the spin part, we find that the dimer is a spin singlet with a complicated
orbital wavefunction corresponding to the eigenenergy 3(1 + λ + 2

√
λ2 − λ + 1). So in

the dimerized state, the effective Hamiltonian (19) has a variational ground state energy
E1 = − 1

4 N(J1+J2+J3)− 1
8 N J ′

1(1+λ+2
√

1 − λ + λ2); while in the spin-fluid state, the effective

Hamiltonian has a variational energy E2 = − 1
4 N(J1 + J2 + J3) − 1

2 �N + J ′
1

9 B(−0.4431)N ,
where −0.4431 is from the Bethe ansatz solution of the antiferromagnetic spin- 1

2 chain. From
E1 = E2, a first-order phase transition between the dimerized state and the spin-fluid state can
be obtained. However, just as pointed out by Tonegawa et al [22], the transition between the
spin-fluid phase and the dimerized phase is of second order except at some special points.
In the following, we only discuss the transitions along the symmetric lines of J1 = J3,
J1 = J2 and J2 = J3. On the line of J1 = J3 < J2, we have B = 0, � = J2 − J1 and
E2 = − 1

4 N(J1 + J2 + J3) − 1
2 �N . We can determine the transition from the dimerized state

to the spin-fluid state occurring at J1c = J2 − 1
4 J ′

1(1 + λ + 2
√

1 − λ + λ2). When λ = 1 and
J ′

1 = J1, we get J1c = 1
2 J2, which agrees exactly with the result of Tonegawa et al [22].
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Similarly, along the lines of J1 = J2 < J3 and J2 = J3 < J1, we get the critical points of
J3c = J2 + 1

4 J ′
1(1 + λ+ 2

√
1 − λ + λ2) and J1c = J2 + 1

4 J ′
1(1 + λ+ 2

√
1 − λ + λ2). It is obvious

that the area of the dimerized state depends on the relation between J1, J2 and J3 as well as J ′
1

and J ′
3. More work is needed to study the second-order phase transition. It will be interesting

to study the change of the energy gap in the dimerized phase.

4. Magnetization plateaus in the distorted diamond chain

The magnetization plateaus in the quantum spin systems have been actively studied in
recent years [32–37]. One third of the saturated magnetization Ms was predicted in
the spin- 1

2 trimerized Heisenberg chains [32, 34, 35] or three-leg spin ladder [36]. For
Cu3Cl6(H2O)22H8C4SO2, a magnetization plateau of 1

3 Ms was suggested to occur at the
field of 58 T [20]. The 1

3 Ms and 2
3 Ms magnetization plateaus for the DDC model were also

discussed [22]. In the following, we use the bond operator representations of the spin- 1
2

triangles to study the magnetization of the generalized DDC model in the condition of weak
intertriangle interactions [37]. To study the magnetization process, we have to include the
S = 3

2 quadruplets.
The Hamiltonian H0 can be expressed in terms of the bond operators as

H0 =
∑

i

[− 1
4 (J1 + J2 + J3)(a

†
1i a1i + b†

1i b1i + a†
2i a2i + b†

2i b2i )

+ 1
4 (J1 + J2 + J3)(q

†
1i q1i + q†

−1i q−1i + q†
3i q3i + q†

−3i q−3i ) + �T z
i ], (20)

and the Zeeman term is

Hz = −h
∑

i

[ 1
2 (a†

1i a1i + a†
2i a2i + q†

1i q1i − b†
1i b1i − b†

2i b2i − q†
−1i q−1i)

+ 3
2 (q†

3i q3i − q†
−3i q−3i)]. (21)

When the external magnetic field is small, the lowest two states of the spin triangle in the
external magnetic field are a†

1|0〉 and b†
1|0〉. Projecting out the other six states, we get

S+
p ∼ −1

3

[
1 + 2 cos

(
4π

3
p + δ

)]
σ +,

Sz
p ∼ 1

3

[
1 + 2 cos

(
4π

3
p + δ

)]
σ z,

(22)

with σ + = a†
1b1 and σ z = 1

2 (a†
1a1 − b†

1b1). The total Hamiltonian HT = H0 + H1 + Hz can be
represented by the pseudospin �σ as

H (1)
T =

∑
i

[J (1)
xy (σ x

i σ x
i+1 + σ

y
i σ

y
i+1) + J (1)

z σ z
i σ z

i+1] − h
∑

i

σ z
i (23)

with J (1)
xy = J (1)

z = 1
9 J ′

1{(1 + 2 cos δ) + λ[1 + 2 cos(δ + 2
3 π)]}[1 + 2 cos(δ + 4

3π)].

When the magnetic field increases, the energy of q†
3 |0〉 will become lower than that of

b†
1|0〉. So for large enough magnetic field, we preserve the two states of a†

1|0〉 and q†
3 |0〉, and

then the spins can be expressed with a pseudospin �
:

S+
p ∼ (−1)p 2√

6
ei π+δ

2 sin

(
π

3
p − 1

2
δ

)

+,

Sz
p ∼ 1

3

[
1 − cos

(
4π

3
p + δ

)]

z +

1

3
+

1

6
cos

(
4π

3
p + δ

)
,

(24)
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with 
+ = q†
3 a1 and 
z = 1

2 (q†
3 q3 − a†

1a1). The total Hamiltonian then becomes

H (2)
T =

∑
i

[J (2)
xy (
x

i 

x
i+1 + 


y
i 


y
i+1) + J (2)

z 
z
i 


z
i+1] − hef f

∑
i


z
i , (25)

where

J (2)
xy = 2

3
J ′

1

[
sin

δ

2
sin

(
1

3
π − δ

2

)
− λ sin

(
2

3
π − δ

2

)
sin

(
π

3
− δ

2

)]
,

J (2)
z = 1

9
J ′

1

{
(1 − cos δ) + λ

[
1 − cos

(
2π

3
+ δ

)]}[
1 − cos

(
4π

3
+ δ

)]
,

hef f = h − 1
2 � − 1

2 (J1 + J2 + J3) − h′,

(26)

with h′ = 1
9 J ′

1{2 + 1
2 cos( 2π

3 + δ)− cos δ cos( 4π
3 + δ)+ λ[2 + 1

2 cos δ − cos( 2π
3 + δ) cos( 4π

3 + δ)]}.
The saturated magnetic field of the effective Hamiltonian (23) is h(1)

s = 2J (1)
xy . At h = �, the

energies of the two states b†
1|0〉 and a†

2 |0〉 will cross. So at h � min(�, h(1)
s ), the magnetization

of the original spin Hamiltonian (1) will be 1
3 Ms . On the other hand, when the effective

Hamiltonian (25) saturates in a negative effective magnetic field, the magnetization will be
1
3 Ms . So when min(�, h(1)

s ) � h � h(2)
s = 1

2� + 1
2 (J1 + J2 + J3) + h′ − |J (2)

xy | − J (2)
z ,

we will have a 1
3 Ms magnetization plateau with every spin triangle in the state a†

1 |0〉.
Furthermore, when |J (2)

z /J (2)
xy |〉1 and below a critical magnetic field depending on J (2)

z /J (2)
xy ,

the effective Hamiltonian (22) will be antiferromagnetic and gapped with the two states
a†

1 |0〉 and q†
3 |0〉 appearing alternatively, which means a 2

3 Ms magnetization plateau since∑3
p=1 cos( 4π

3 p + δ) = 0. The width of the plateau is [38]

�h = 2|J (2)
xy | sinh α

∞∑
n=−∞

(−1)n

2 cosh nα
(27)

with cosh α = J (2)
z /J (2)

xy and α > 0.

5. Summary

In summary, we have studied the ground state properties of a generalized DDC with the help of
the bond operator representations for three S = 1

2 spins. We mapped the model Hamiltonian
of the antiferromagnetic spin- 1

2 trimer chain systems to an effective spin–orbit model and
then studied the phase diagram of the effective model by means of second-order perturbation
theory and the mean-field decoupling. Depending on the ratio of the intratriangle coupling
constants, the ferrimagnetic phase, the spin-fluid phase and the dimerized phase are shown
to compete at low temperatures. The region of the dimerized phase around the symmetric
point of J1 = J2 = J3 increases with increasing intertriangle interactions. The 1

3 Ms and 2
3 Ms

magnetization plateaus in the external magnetic field were also studied.
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